About seller
Threespine sticklebacks of the genus Gasterosteus, are small teleost fish that are widely distributed across the northern hemisphere. The fish is believed to have two major types of life history, freshwater resident and anadromous; however little is known about their migration ecology. Comprehensive research on the migratory history, habitat use and relative composition of migratory types was conducted by analysing the otolith strontium and calcium concentrations collected in various environments of northern Japan. The present study first demonstrated that approximately 90% of morphologically anadromous sticklebacks had estuarine resident migration pattern, consistently living in brackish water and/or marine environments through their life cycle without any time spent in freshwater. The dominant occurrence of the estuarine resident was temporally and spatially consistent with their general migration ecology. The estuarine resident is thought to be the ancestral migrations of G. aculeatus and G. nipponicus, which thereafter gradually immigrated into freshwater habitats and settled in the anadromous form in both species and finally became the freshwater resident G. aculeatus. Thus, this study provides novel insights into the evolutionary migration of these fish, as well as a new discovery regarding the dominant migratory history and habitat use in threespine sticklebacks.In the present paper the possibility of an energetic self-optimization as a consequence of thermodynamic stability is addressed. This feature is analyzed in a low dissipation refrigerator working in an optimized trade-off regime (the so-called Omega function). The relaxation after a perturbation around the stable point indicates that stability is linked to trajectories in which the thermodynamic performance is improved. Furthermore, a limited control over the system is analyzed through consecutive external random perturbations. The statistics over many cycles corroborates the preference for a better thermodynamic performance. Endoreversible and irreversible behaviors play a relevant role in the relaxation trajectories (as well as in the statistical performance of many cycles experiencing random perturbations). A multi-objective optimization reveals that the well-known endoreversible limit works as an attractor of the system evolution coinciding with the Pareto front, which represents the best energetic compromise among efficiency, entropy generation, cooling power, input power and the Omega function. Meanwhile, near the stable state, performance and stability are dominated by an irreversible behavior.We monitored winter sheltering behavior of Copper Rockfish (Sebastes caurinus) in layered boulders at a shoreline in British Columbia and identified possible links to climate change and evolutionary adaptation. During late autumn and winter, these fish were inside the interstices of the boulder pile (termed "winter sheltering"); these fish were actively swimming above the boulders during spring through early fall. Sheltering duration did not vary between normal and most El Niño years (154-177 days). Sheltering longer than 6 months occurred during strong La Niña winters (197-241 days). Additionally, the proximate stimulus for entry into sheltering was intense Arctic outflow windstorms. Emergence from sheltering appears linked to water temperatures, occasionally related more to spring river flooding (snowmelt). The winter sheltering behavior we describe may be unique to shoreline populations in inland seas. Sheltering may confer a fitness advantage by conserving energy or reducing mortality from predation, thus increasing longevity and chances for successful reproduction. Our observations suggest that an ONI threshold of 0.8 °C or greater would be better suited than the current 0.5 °C threshold used to define ONI events.In Heritage Science, the evaluation of stone consolidation treatments by investigating the nature of in situ newly formed products and their penetration depth within the consolidated matrix is a grand challenge. A number of analytical methods have been proposed, but, currently, most of them are not able to supply a full overview of the spatial, structural and compositional information of the newly formed crystalline and amorphous phases with a submicrometric lateral resolution. Here, we examined, the capabilities of synchrotron radiation (SR)-based two-dimensional X-ray absorption near-edge structure (2D-XANES) spectroscopy at Ca K-edge for determining the structural and compositional properties of the compounds formed after the application of a calcium acetoacetate-based consolidant on a porous carbonatic stone (limestone) and for investigating their stratigraphic distribution at the submicrometric scale length. We evaluated advantages and drawbacks of three Ca K-edge 2D-XANES-based approaches (i) transmission mode full-field-XANES (FF-XANES) imaging; (ii) micro-X-ray fluorescence (μ-XRF) mapping above the Ca K-edge combined with the acquisition of XRF mode μ-XANES spectra at a limited number of spots; (iii) full-spectral µ-XANES (FS µ-XANES) mapping in XRF mode and its variant called selectively induced X-ray emission spectroscopy (SIXES) mapping. Overall, Ca K-edge 2D-XANES spectroscopy provided accurate qualitative and semi-quantitative information on the newly formed calcium carbonates (i.e., amorphous calcium carbonate, vaterite and calcite) and their stratigraphic distribution at the submicrometric scale, thus opening a new scenario to study the carbonatation process of calcium-based consolidants in limestones.ARID1A loss-of-function mutation accompanied by a loss of ARID1A protein expression is considered one of the most important driver events in endometriosis-associated ovarian cancer. Although our recent genomic study clarified that ARID1A loss-of-function mutations were detected in 13% of ovarian endometriosis, an association between the ARID1A mutation status and ARID1A protein expression in ovarian endometriosis remains unclear. We performed immunohistochemical staining for ARID1A in 78 ovarian endometriosis samples and 99 clear cell carcinoma samples. see more We revealed that not only 70 endometriosis samples without ARID1A mutations but also eight endometriosis samples with ARID1A loss-of-function mutations retained ARID1A protein expression. On the other hand, most of clear cell carcinomas with ARID1A loss-of-function mutations showed a loss of ARID1A protein expression. In particular, clear cell carcinoma samples which harbor multiple ARID1A loss-of-function mutations or both a single ARID1A loss-of-function mutation and ARID1A allelic imbalance lost ARID1A protein expression.