About seller
Several studies have reported that stroke survivors displayed improved voluntary planar movements when forces supporting the upper limb were increased, and when impeding forces were decreased. Earlier haptic devices interacting with the human upper limb were potentially impacted by undesired residual friction force and device inertia. To explore natural, undisturbed voluntary motor control in stroke survivors, we describe the development of a Decoupled-Operational space Robot for wide Impedance Switching (DORIS) with minimized mechanical impedances. This design is based on a novel decoupling mechanism separating the end effector from a manipulator. While the user manipulates the end effector freely inside the workspace of the decoupling mechanism, to which a manipulator of the robot is attached, the robot detects such change in position using a lightweight linkage system. The manipulator of the robot then follows such movements of the end effector swiftly. Consequently, the user can explore the extended workspace, which can be as large as the manipulator's workspace. Since the end effector is mechanically decoupled from the manipulators and actuators, the user can remain unaffected by mechanical impedances of the manipulator. Mechanical impedances perceived by the user and bandwidth of the control system were estimated. The developed robot was capable of detecting larger maximum acceleration and larger jerk of the reaching movement in chronic stroke survivors with hemiparesis. We propose that this device can be utilized for evaluating voluntary motor control of the upper limb while minimizing the impact of robot inertia and friction on limb behavior.Gamma oscillations are a prominent activity pattern in the cerebral cortex. While gamma rhythms have been extensively studied in the adult prefrontal cortex in the context of cognitive (dys)functions, little is known about their development. We addressed this issue by using extracellular recordings and optogenetic stimulations in mice across postnatal development. We show that fast rhythmic activity in the prefrontal cortex becomes prominent during the second postnatal week. While initially at about 15 Hz, fast oscillatory activity progressively accelerates with age and stabilizes within gamma frequency range (30-80 Hz) during the fourth postnatal week. Activation of layer 2/3 pyramidal neurons drives fast oscillations throughout development, yet the acceleration of their frequency follows similar temporal dynamics as the maturation of fast-spiking interneurons. These findings uncover the development of prefrontal gamma activity and provide a framework to examine the origin of abnormal gamma activity in neurodevelopmental disorders.The nucleus of the solitary tract (NTS) is critical for the central integration of signals from visceral organs and contains preproglucagon (PPG) neurons, which express leptin receptors in the mouse and send direct projections to the paraventricular nucleus of the hypothalamus (PVH). Here, we visualized projections of PPG neurons in leptin-deficient Lepob/ob mice and found that projections from PPG neurons are elevated compared with controls, and PPG projections were normalized by targeted rescue of leptin receptors in LepRbTB/TB mice, which lack functional neuronal leptin receptors. Moreover, Lepob/ob and LepRbTB/TB mice displayed increased levels of neuronal activation in the PVH following vagal stimulation, and whole-cell patch recordings of GLP-1 receptor-expressing PVH neurons revealed enhanced excitatory neurotransmission, suggesting that leptin acts cell autonomously to suppress representation of excitatory afferents from PPG neurons, thereby diminishing the impact of visceral sensory information on GLP-1 receptor-expressing neurons in the PVH.Human African trypanosomiasis (HAT) has been targeted for zero transmission to humans by 2030. Animal reservoirs of gambiense-HAT could jeopardize these elimination goals. This study was undertaken to identify potential host reservoirs for Trypanosoma brucei gambiense by detecting its natural infections in domestic animals of Chadian HAT foci. Blood samples were collected from 267 goats, 181 sheep, 154 dogs, and 67 pigs. Rapid diagnostic test (RDT) and capillary tube centrifugation (CTC) were performed to search for trypanosomes. DNA was extracted from the buffy coat, and trypanosomes of the subgenus Trypanozoon as well as T. b. gambiense were identified by PCR. Of 669 blood samples, 19.4% were positive by RDT and 9.0% by CTC. PCR revealed 150 animals (22.4%) with trypanosomes belonging to Trypanozoon, including 18 (12%) T. b. gambiense. This trypanosome was found in all investigated animal species and all HAT foci. Between animal species or villages, no significant differences were observed in the number of animals harboring T. b. gambiense DNA. Pigs, dogs, sheep and goats appeared to be potential reservoir hosts for T. b. gambiense in Chad. The identification of T. b. gambiense in all animal species of all HAT foci suggests that these animals should be considered when designing new control strategies for sustainable elimination of HAT. Investigations aiming to decrypt their specific role in each epidemiological setting are important to achieve zero transmission of HAT.Cryptosporidium spp. and Giardia duodenalis are common gastrointestinal parasites with a broad range of hosts, including humans, livestock, and wildlife. To examine the infection status and assess the zoonotic potential of Cryptosporidium spp. and G. duodenalis in dairy cattle in Gansu, China, a total of 1414 fecal samples were collected from the rectum, with one sample collected from each individual animal. All the samples were tested using nested PCR based on the small subunit ribosomal RNA (SSU rRNA) gene of Cryptosporidium spp. and G. duodenalis. The overall infection rates of Cryptosporidium spp. and Giardia duodenalis were 4.2% (n = 59) and 1.0% (n = 14), respectively. Four Cryptosporidium species were identified C. andersoni (n = 42), C. parvum (n = 12), C. bovis (n = 5), and C. EGFR inhibitor ryanae (n = 1). In further analyses of subtypes of C. parvum isolates based on the 60 kDa glycoprotein (gp60) gene, five were successfully subtyped as IIdA19G1 (n = 4) and IIdA15G1 (n = 1). All 14 G. duodenalis isolates were identified as assemblage E using the triosephosphate isomerase (tpi) gene.